If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=142
We move all terms to the left:
x^2-(142)=0
a = 1; b = 0; c = -142;
Δ = b2-4ac
Δ = 02-4·1·(-142)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{142}}{2*1}=\frac{0-2\sqrt{142}}{2} =-\frac{2\sqrt{142}}{2} =-\sqrt{142} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{142}}{2*1}=\frac{0+2\sqrt{142}}{2} =\frac{2\sqrt{142}}{2} =\sqrt{142} $
| 2^x-5=32 | | 2^2x+8=3^x-44 | | 8x+38=-7(-3-2x)-1 | | 6(2x+1)(x-7)-(3x-2)(4x-1)=23 | | Y=1/5+bC(3,6) | | 43+t+17+2t-16=180 | | 10x+48=13x+18 | | 17.02+12.1m=2.7m–14.7–10.58 | | d=85d-25 | | 73+66+2y+40=180 | | 2x-3.5=15 | | 7+3x=5×-5 | | 32/135=x/60 | | 2n+13=-23 | | 2p-6+30+3p=180 | | 7=42-5n | | 5/6x4= | | 3/8+p=-1/5 | | 6y-14+y+19+5y=180 | | 60/135=x/32 | | 3t+16=-3t | | 2c+2c+c+13=180 | | 2.5/5=x/4= | | 33+2w+1+w+3=180 | | y-15=65 | | 3x+1=3×+1 | | -6(5x-2)+7(2-3x)=5 | | 2(1-3x)-(x-5)=1 | | a+41+2a-11+3a=180 | | 3/8a=6/10a+3 | | x-(.1*x)=16 | | -7h–20–10h=16–15h |